Tag Content
SG ID
SG00009313 
UniProt Accession
Theoretical PI
9.12  
Molecular Weight
12648 Da  
Genbank Nucleotide ID
Genbank Protein ID
Gene Name
Ndufs5 
Gene Synonyms/Alias
 
Protein Name
NADH dehydrogenase [ubiquinone] iron-sulfur protein 5 
Protein Synonyms/Alias
Complex I-15 kDa;CI-15 kDa NADH-ubiquinone oxidoreductase 15 kDa subunit; 
Organism
Mus musculus (Mouse) 
NCBI Taxonomy ID
10090 
Chromosome Location
chr:4;123389953-123395445;-1
View in Ensembl genome browser  
Function in Stage
Uncertain 
Function in Cell Type
Uncertain 
Probability (GAS) of Function in Spermatogenesis
0.671238544 
The probability was calculated by GAS algorithm, ranging from 0 to 1. The closer it is to 1, the more possibly it functions in spermatogenesis.
Description
Temporarily unavailable 
Abstract of related literatures
1. This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5' and 3' boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and polyadenylation. There are 16,247 new mouse protein-coding transcripts, including 5154 encoding previously unidentified proteins. Genomic mapping of the transcriptome reveals transcriptional forests, with overlapping transcription on both strands, separated by deserts in which few transcripts are observed. The data provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development. PMID: [16141072] 

2. The mouse (Mus musculus) is the premier animal model for understanding human disease and development. Here we show that a comprehensive understanding of mouse biology is only possible with the availability of a finished, high-quality genome assembly. The finished clone-based assembly of the mouse strain C57BL/6J reported here has over 175,000 fewer gaps and over 139 Mb more of novel sequence, compared with the earlier MGSCv3 draft genome assembly. In a comprehensive analysis of this revised genome sequence, we are now able to define 20,210 protein-coding genes, over a thousand more than predicted in the human genome (19,042 genes). In addition, we identified 439 long, non-protein-coding RNAs with evidence for transcribed orthologs in human. We analyzed the complex and repetitive landscape of 267 Mb of sequence that was missing or misassembled in the previously published assembly, and we provide insights into the reasons for its resistance to sequencing and assembly by whole-genome shotgun approaches. Duplicated regions within newly assembled sequence tend to be of more recent ancestry than duplicates in the published draft, correcting our initial understanding of recent evolution on the mouse lineage. These duplicates appear to be largely composed of sequence regions containing transposable elements and duplicated protein-coding genes; of these, some may be fixed in the mouse population, but at least 40% of segmentally duplicated sequences are copy number variable even among laboratory mouse strains. Mouse lineage-specific regions contain 3,767 genes drawn mainly from rapidly-changing gene families associated with reproductive functions. The finished mouse genome assembly, therefore, greatly improves our understanding of rodent-specific biology and allows the delineation of ancestral biological functions that are shared with human from derived functions that are not. PMID: [19468303] 

3. The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline. PMID: [15489334] 

Back to Top
Function
Accessory subunit of the mitochondrial membranerespiratory chain NADH dehydrogenase (Complex I), that is believednot to be involved in catalysis. Complex I functions in thetransfer of electrons from NADH to the respiratory chain. Theimmediate electron acceptor for the enzyme is believed to beubiquinone (By similarity). 
Back to Top
Subcellular Location
Mitochondrion (By similarity). Mitochondrioninner membrane; Peripheral membrane protein (By similarity).Mitochondrion intermembrane space (Potential). 
Tissue Specificity
 
Gene Ontology
GO IDGO termEvidence
GO:0005743 C:mitochondrial inner membrane IEA:UniProtKB-SubCell.
GO:0005758 C:mitochondrial intermembrane space IEA:UniProtKB-SubCell.
GO:0005739 C:mitochondrion IDA:MGI.
GO:0070469 C:respiratory chain IEA:UniProtKB-KW.
GO:0022900 P:electron transport chain IEA:UniProtKB-KW.
GO:0032981 P:mitochondrial respiratory chain complex I assembly IEA:Compara.
Back to Top
Interpro
IPR019342;    NADH_UbQ_OxRdtase_FeS-su5.
Back to Top
Pfam
PF10200;    Ndufs5;    1.
Back to Top
SMART
PROSITE
PRINTS
Created Date
18-Oct-2012 
Record Type
GAS predicted 
Sequence Annotation
INIT_MET      1      1       Removed (By similarity).
CHAIN         2    106       NADH dehydrogenase [ubiquinone] iron-
                             sulfur protein 5.
                             /FTId=PRO_0000118787.
MOTIF        33     43       C-X9-C motif 1.
MOTIF        56     66       C-X9-C motif 2.
DISULFID     33     66       Potential.
DISULFID     43     56       Potential.
Back to Top
Nucleotide Sequence
Length: bp   Go to nucleotide: FASTA
Protein Sequence
Length: 106 bp   Go to amino acid: FASTA
The verified Protein-Protein interaction information
UniProt
Gene Symbol Ref Databases
Poldip2String 
Poldip2String 
SNCABioGRID 
Other Protein-Protein interaction resources
String database  
View Microarray data
Comments